Reg. No.:				

G. VENKATASWAMY NAIDU COLLEGE (AUTONOMOUS), KOVILPATTI – 628 502.

PG DEGREE END SEMESTER EXAMINATIONS - NOVEMBER 2025.

(For those admitted in June 2025 and later)

PROGRAMME AND BRANCH: M.Sc., MATHEMATICS

SEM	CATEGORY	COMPONENT	COURSE CODE	COURSE TITLE
I	PART - III	CORE ELECTIVE - 2	P25MA1E2C	ANALYTIC NUMBER THEORY

Date & Session: 12.11.2025/FN Time: 3 hours Maximum: 75 Marks

Date 8	Date & Session: 12.11.2025/FN			e: 3 hours	Maximum: 75 Marks		
Course Outcome	Bloom's K-level	Q. No.	SECTION - A (10 X 1 = 10 Marks) Answer ALL Questions.				
CO1	K1	1.	Which of the following is not a) $1 n$ b) $n 0$		$n=0$ d) $n \nmid 0$		
CO1	K2	2.	If $d n$ and $n \neq 0$ implies a) $ d \leq n $ b) $ n $	$ \stackrel{-}{\leq} d \qquad \text{c) } d = n $	d) n < d		
CO2	K1	3.	$\varphi(10) = \underline{\hspace{1cm}}$ where φ is Eulary a) 2 b) 4	er totient function. c) 6	d) 8		
CO2	K2	4.	If $n \ge 1$, $\sum_{d n} \Lambda(d) =$ who a) $\log n$ b) $\log n$		ion. d) $\varphi(d)$		
CO3	K1	5.	Which one of the following a) $\lambda(108) = 0$ b) $\lambda(108) = 0$, , , ,	tes Liovillie's function)? d) $\lambda(108) = 2$		
CO3	K2	6.	A formal power series is cal point on. a) geometric series c) formal polynomial	lled a if all its coeff b) inverse seri d) Cauchy pro	es		
CO4	K1	7.	Asymptotic value of error <i>E</i> a) \sqrt{x} b) 2 <i>C</i>	$(x) = (2C - 1)x + O(\sqrt{x})$ is -1 c) C	d) $(2C - 1)x$		
CO4	K2	8.	The average order of $\sigma_1(n)$ i a) $\frac{\pi^2}{6}$ b) $\frac{\pi^2 n}{12}$		d) $\frac{\pi n}{12}$		
CO5	K1	9.	If $x > 0$, the Chebyshev ϑ -for runs over all primes $\le x$. a) $\vartheta(x) = \sum_{p < x} \log x$ c) $\vartheta(x) = \sum_{p < x} \log p$	b) $\vartheta(x) = \sum_{p \le x} \log x$ d) $\vartheta(x) = \sum_{p \le x} \log p$			
CO5	K2	10.	Let p_n denote the n^{th} prime a) 1 b) 0	Then $\lim_{n\to\infty} \frac{p_n}{n\log n} =$ c) n	 d) p		
Course	Bloom's K-level	Q. No.	$\frac{\text{SECTION} - B \text{ (5 X 5 = 25 Marks)}}{\text{Answer } \underline{\text{ALL }} \text{ Questions choosing either (a) or (b)}}$				
CO1	K2	11a.	Write down the statement a	and proof of Euclid's lem	ma.		
CO1	K2	11b.	Illustrate a proof of the stat	* *	ely many primes".		

CO2	K2	12a.	If $n \ge 1$, show that $\sum_{d n} \varphi(d) = n$
			(OR)
CO2	K2	12b.	Explain that mobius function is multiplicative but not completely multiplicative.
CO3	КЗ	13a.	Write down the proof of that if f and g are multiplicative, so is their
			Dirichlet product $f * g$.
			(OR)
CO3	КЗ	13b.	For any arithmetical function α and β , determine a proof that $\alpha \circ (\beta \circ F) = 0$
			$(\alpha * \beta) \circ F$
001			1
CO4	КЗ	14a.	For $x \ge 1$, determine that $\sum_{n \le x} \sigma_1(n) = \frac{1}{2} \zeta(2) x^2 + O(x \log x)$.
			(OR)
CO4	КЗ	14b.	For $x > 1$, construct a proof of $\sum_{n \le x} \varphi(n) = \frac{3}{\pi^2} x^2 + O(x \log x)$.
	NO	1 10.	
CO5	K4	15a.	Illustrate a proof of the Legendre's identity with its statement.
			(OR)
CO5	K4	15b.	Examine that $0 \le \frac{\psi(x)}{x} - \frac{\theta(x)}{x} \le \frac{(\log x)^2}{2\sqrt{x}\log^2}$ for $x > 0$.
			Examine that $0 \le x = \frac{1}{x} \le \frac{101}{2\sqrt{x} \log 2}$ for $x > 0$.
1		I	

Course Outcome	Bloom's K-level	Q. No	$\frac{\text{SECTION} - C \text{ (5 X 8 = 40 Marks)}}{\text{Answer } \frac{\text{ALL}}{\text{Questions choosing either (a) or (b)}}$
CO1	K4	16a.	Given any two integers a and b , examine that there is a common divisor d of a and b of the form $d = ax + by$ where x and y are integers. Moreover, inspect that every common divisor of a and b divides this d . (OR)
CO1	K4	16b.	Illustrate proof of the fundamental theorem of arithmetic with its statement.
CO2	K5	17a.	For $n \ge 1$, prove that $\varphi(n) = n \prod_{p n} \left(1 - \frac{1}{p}\right)$.
CO2	K5	17b.	, , , , , , , , , , , , , , , , , , ,
CO3	K5	18a.	Let f be multiplicative. Prove that f is multiplicative if and only if $f^{-1}(n) = \mu(n)f(n)$ for all $n \ge 1$.
CO3	K5	18b.	For every $n \ge 1$, prove that $\sum_{d n} \lambda(d) = \begin{cases} 1 & \text{if } n \text{ is a square} \\ 0 & \text{otherwise} \end{cases}$. Also, deduct that $\lambda^{-1}(n) = \mu(n) $ for all n .
CO4	K5	19a.	State and prove Euler's summation formula. (OR)
CO4	K5	19b.	Prove that two lattice points (a, b) and (m, n) are mutually visible if and only if $a - m$ and $b - n$ are relatively prime.
CO5	К6	20a.	Construct the proof for Abel's identity with statement. (OR)
CO5	K6	20b.	Propose that the following statement are logically equivalent: (i) $\lim_{x \to \infty} \frac{\pi(x) \log x}{x} = 1$ (ii) $\lim_{x \to \infty} \frac{\theta(x)}{x} = 1$ (iii) $\lim_{x \to \infty} \frac{\psi(x)}{x} = 1$